1楼:
因为循环流化床锅炉对煤的燃烧更加充分
所以底渣含碳量小
2楼:匿名用户
问题本身错了吧,循环流化床锅炉低渣含碳量大于煤粉炉
3楼:没事儿偷着乐
主炉膛+四个外置床,煤粉在炉膛停留时间长,燃烧充分,
循环流化床锅炉对煤粒径的要求是什么?
4楼:匿名用户
循环流化床锅炉为了要称定其流化状态,对炉煤的颗粒有严格的要求,一般要求入炉粉颗粒径不得超过13mm。并且各个范围粒径的煤颗粒所占的比例值要符合锅炉设计的要求
电厂燃媒锅炉跟循环流化床锅炉的区别
5楼:匿名用户
电厂的燃煤锅炉一般是煤粉炉曾做过流化床和煤粉炉的调研,这里主要把优缺点说了一下,你自己参考下吧(一)循环流化床锅炉相比煤粉锅炉的优点:
1)对燃料适应性特别好。循环流化床锅炉通过分离器及返料阀组成飞灰再循环系统,煤质的燃烧产生的飞灰循环量大小的改变可调节燃烧室内的吸热量及床料温度,只要燃料燃烧产生的热值大于把燃料本身及燃烧所需空气加热到稳定温度(850~950℃)所需的热量,这种煤就可在流化床内稳定燃烧,因此,各种煤几乎都可在流化床锅炉中燃烧,用来烧各种劣质燃料最好不过。对于燃料煤质量供给不稳定的企业是一种比较好选择。
而煤粉炉对煤质的要求较高,当燃煤与设计煤种存在较大差异时容易出现炉膛喷燃器、过热器结焦,给煤机断煤等现象,使锅炉无法正常运行,煤粉炉对煤种适应性差的现象比较明显。
2)燃料系统比较简单。流化床锅炉是适合于燃用宽筛分燃料(煤粒度要求为粒度范围0-10mm,50%切割粒径d50=2mm),燃料的制备破碎系统大为简化。所以,循环流化床锅炉本体造价高于同容量的煤粉炉,省去了复杂的制粉系统,整体投资含土建仍低于煤粉炉。
3)燃烧效率高。对常规的煤粉锅炉,若煤种达不到设计值,效率一般可达到85-95%,而循环流化床锅炉采用飞灰再循环系统,燃烧效率可达到95-99%。
4)负荷的调节范围宽,调节性能好。煤粉锅炉的负荷调节范围通常在70~110%,在低负荷时煤粉炉需投油枪进行助燃;而循环流化床锅炉由于炉内有大量床料,蓄热能力强,采用了飞灰再循环系统,调节范围要比煤粉炉宽得多,一般为30~110%,负荷调节速率可达(5~10)b-mcr/min。故循环流化床特别适应于热电联产、热负荷变化较大的供热锅炉或调峰机组锅炉使用。
5)燃烧污染物排放低。向循环流化床锅炉内加入脱硫剂(石灰石或白云石粉),可以脱去燃烧过程中产生的二氧化硫(so2)。根据燃料中含硫量决定加入的石灰石剂量,在ca/s摩尔比=2~2.
5时,脱硫效率可达90%。和煤粉炉比较(煤粉炉利用湿法脱硫的成本:利用国外技术平均费用1300~1500元/kw,国内技术平均费用1000元/kw),流化床锅炉在烧高硫煤时有较大的成本优势。
流化床锅炉最佳的燃烧温度在850~950℃,在这个范围适合脱硫反应,nox生成量明显减少,排放浓度在100~200ppm,低于煤粉炉的500~600ppm,循环流化床锅炉的其它污染物排放如co、hcl、hf的排放也低于煤粉炉;对煤粉炉而言,要从烟气中脱除nox,造价比煤粉炉脱硫的费用还要大得多。循环流化床锅炉在so2、nox的排放量完全能达到国家环境排放标准,使它与煤粉锅炉在环境排放方面竞争有绝对的优势。
6)燃烧热强度大,炉内传热能力强。由于循环流化床锅炉采用飞灰再循环系统,燃烧热强度比较高,截面热负荷可达3~8mw/m2,接近或高于煤粉炉,,炉膛容积热负荷为1.5~2mw/m3是煤粉炉的8~10倍。
流化床炉内传热主要是上升烟气和物料与受热面的对流换热和辐射换热 ,炉膛内气固两相混合物对水冷壁的传热系数比煤粉锅炉炉膛的辐射传热系数大得多。与煤粉炉相比较,可大幅节省受热面的金属耗量。
7)给煤点数量少,布置简单。循环流化床锅炉横向混合特性较好,给煤点较煤粉炉少,如220t/h只有4个给煤点,给煤点的减少简化了给煤装置的布置,使给煤点不易结焦,运行可靠。
8)易于实现灰渣的综合利用。流化床的底渣含碳量一般为1~3%,飞灰含碳量 4~15%,流化床锅炉最佳的燃烧温度在850~950℃,与煤粉炉相比较属中低温燃烧,产生的灰渣不会软化和黏结,活性较好,可用作制造水泥的掺和料或者建筑材料,综合利用前景广阔。
(二)循环流化床锅炉相比煤粉炉的缺点:
1)循环流化床锅炉风机电耗大、烟风道阻力高。相对于煤粉锅炉,流化床锅炉一次风机、二次风机、流化风机压头高;流化床独有的布风板装置和飞灰再循环燃烧系统使送风系统的阻力远大于煤粉锅炉送风的阻力,煤粉炉送风机风压一般在2kpa以下,而流化床锅炉的送风机风压一般运行在10kpa以上,电耗大,噪音高,震动大。一般循环流化床锅炉用电比率比煤粉炉至少高4~5%以上。
2)锅炉部件的磨损较严重。由于流化床锅炉内的物料成高浓度、高风速的特点,故锅炉部件的磨损比较严重。虽然采取了耐火耐磨浇注料处理、喷涂处理、密稀相区让管等防磨措施处理,但实际运行中循环流化床炉膛内的受热面磨损速度仍远大于煤粉锅炉。
密稀相区交界处的管壁磨损处理修复要比煤粉炉难度大得多。
3)耐火耐磨层磨损、开裂和脱落是流化床锅炉比较棘手的问题。流化床锅炉使用耐火材料的部位和数量比煤粉炉要多许多。而由于耐火耐磨材料选择不当,或者施工工艺不合理,或者烘炉和点火启动中温度控制不当,升温、降温过快,导致耐火材料中蒸发水汽不能及时排出,或者热应力过大,造成耐火材料内衬破裂和脱落。
密相区内耐火材料的的脱落将破坏正常的床料流化工况,造成床料结渣。分离器、料腿及返料阀系统耐火材料的的脱落将堵塞返料系统结渣,物料循环破坏,循环流化床锅炉变成鼓泡流化床锅炉,蒸发量无法维持,被迫停炉。而在煤粉锅炉中不存在这个问题,因煤粉锅炉冷灰斗耐火材料的脱落及结渣而影响停炉的事故很少见。
4)点火启动时间长。循环流化床锅炉点火启动时间除受汽包升温速率的影响外,还受到耐火防磨层内衬材料温升和能承受的热应力限制。温升过快,耐火防磨层内衬材料热应力将超过允许热应力出现开裂。
所以,对循环流化床锅炉点火启动时间和升温速率有严格要求。汽冷旋风分离器的循环流化床锅炉从冷态启动到带满负荷的时间一般控制在6~8小时。而煤粉锅炉因无大面积的耐火防磨内衬材料,点火启动只考虑汽包升温速率,点火时间相对较短,冷态在5~6小时就可达到设计负荷。
5)循环流化床锅炉对燃料适应性广,但对燃煤粒径要求严格。循环流化床锅炉燃煤粒径一般在0~10mm之间,平均粒径在2.5~3.
5mm之间,如果达不到这个要求,将带来运行中的不良后果,锅炉达不到设计蒸发量,主汽温度难以保证,灰渣含碳量高,受热面磨损严重。
6)n2o生成量较煤粉炉高。与高温煤粉炉燃烧过程相比较,循环流化床锅炉燃烧温度较低,nox(no、no2等氮氧化物的总称)生成量较少,但n2o的生成量较大,,它俗称“笑气”,是一种强温室效应气体,对大气臭氧层具有破坏作用,导致紫外线直接照射到地球上,引发**癌。目前国际上对“笑气”排放比较关注。
7)循环流化床锅炉尾部受热面的磨损比煤粉炉大。循环流化床锅炉的飞灰份额比煤粉炉小,但飞灰粒径比煤粉炉大得多,在运行中如果分离器效果差或烟气流速大,将导致过热器、省煤器等受热面磨损严重。
8)循环流化床锅炉的核心部件风帽较易磨损。风帽通风孔之间的横向冲刷,及高速床料对风帽的磨损容易引起风室漏渣、流化效果恶化、结焦、沟流现象,影响锅炉负荷。而风帽的维修异常困难,需要先清除布风板上几十吨的惰性床料,然后又回装,检修周期长,劳动力需求大。
煤粉炉就不存在这个问题。
9)运行维护费用较高,运行周期短。循环流化床锅炉本体,包括耐火防磨层,金属受热面和风帽磨损严重,导致流化床日常维修费用较煤粉炉高。由于本体及辅机事故比煤粉炉多,循环流化床锅炉连续累计运行时间比煤粉炉短,煤粉炉年运行时间可以达到8000h/y以上,而流化床几乎不可能,运行周期能达到100天就不错了。
对适应化工系统安全、稳定、长周期运行的要求有一定的差距。
10)循环流化床锅炉实现自动化控制难度大。循环流化床锅炉的燃烧系统较煤粉炉复杂得多,对床压的控制、床温的控制、返料系统风量的控制,都是煤粉锅炉所没有的,加之炉内磨损严重,压力、温度测点连续投运可靠性无法保证,自动化控制较煤粉炉难得多,风烟系统自动控制能达到单冲量自动控制就不错了,而煤粉炉通过调试可以达到燃烧系统自动控制,减少了操作人员的工作量。这是循环流化床锅炉所不具备的。
综上说述,循环流化床锅炉在运行中的问题要较煤粉锅炉多,连续运行小时数要比煤粉炉短,在化工行业选型中,如果燃料煤质**可靠,燃料含硫量低可考虑煤粉锅炉,它具有燃烧稳定,,辅机技术成熟自动化程度高,易于操作,运行周期长,维修量相对较小的优点,适合化工系统长周期安全稳定运行的特点。反之,若立足于燃烧劣质煤,供煤质量不稳定,且煤质含硫量高,环境排放要求苛刻,属于供热、调峰、热电联产类的供热形式,良好的脱硫成本,对各种煤质良好的适应性,考虑循环流化床锅炉是好选择。
对于循环流化床锅炉(130t3.82mpa)来说,煤的粒度对锅炉运行有什么影响?比如粒度不在设计范围内(0-13mm
6楼:百万方格
这是我公司对粒度、灰渣含碳量分析的部分来回答你的问题。
2、 燃煤粒径变化对cfb锅炉运行的影响
2.1 燃煤平均粒径对锅炉增发量的影响
燃煤平均粒径太大,在设计的流化速度下,吹出密相床的细颗粒就少,大量的粗颗粒在密相床内燃烧(燃烧份额增加),释放出大量的热量。由于燃烧室下部受热面的布置是一定的,不能吸收过多的热量,造成床下部温度升高。结果是一方面加不上煤,另一方面是易发生床料高温结渣。
实际运行中为了控制这样的燃烧工况带负荷运行,运行人员只有采取加大一次风量或减少给煤量的办法控制床温,维持锅炉的安全稳定运行。这样就带来了两种结果:
一、减少入炉煤量,必然使锅炉负荷下降,这样可以减少辅助系统设备的运行压力。
二、加一次风抑制床温**满足大颗粒的正常流化,同时就可以加大给煤量接带大负荷,这样又导致细颗粒大量被吹到尾部,照成飞灰含碳量增加。
从上述分析可以看出,这样粒径分布带来的调整手段是个矛盾,很难做出取舍。
2.2燃煤粒径对燃烧效率的影响
锅炉燃烧热损失中较大的一项是固体不完全燃烧损失q4。对cfb循环流化床锅炉一般床底渣的含碳量≤2.0%,低于煤粉燃烧锅炉。
但是,飞灰含碳量高于10%的偏多,高于煤粉炉,特别对燃煤中细颗粒偏多的情况,当燃煤热值较高、挥发分含量较低时(烟煤),飞灰含碳量高达20%~30%。严重影响了锅炉燃烧效率。
2.3燃煤粒径分布对循环流化床锅炉受热面和耐火防磨内衬的影响
燃煤颗粒太粗,必然导致流化床锅炉粒子循环流量小,蒸发量达不到设计值,燃烧室下部温度偏高,上部温度偏低。为了解决这一问题,作为运行手段之一,常采用加大风量运行,使较大粒子能带到燃烧室上部燃烧,提高燃烧室上部温度,降低燃烧室下部温度,防止结渣,改善煤粒燃尽效果,提高蒸发量。而受热面和防磨耐火内衬的磨损量与气流速度的3次方成正比,大风量运行的结果,急剧加速了对锅炉的磨损。
2.4燃煤粒径对锅炉灰渣比和冷渣器运行的影响
燃煤中粗细颗粒比率的变化影响锅炉床底渣和飞灰的比率。燃煤中粗颗粒多,床底渣排放量大,影响冷渣器的运行。如果冷渣器不能满足渣量多和粒度大的要求,冷渣温度就达不到设计值。
如进一步加大流化风量仍然无法使入炉煤燃尽,就会发生冷渣器内部爆燃、入口喷火喷渣、堵塞和结渣的问题。因此,影响了锅炉带满负荷和连续运行的时间。