什么是线性规划问题,及有那些相关概念?如何解决

2020-11-24 09:43:54 字数 6822 阅读 2722

1楼:杏亦辰

线性规划问题的数学模型的一般形式  (1)列出约束条件及目标函数

(2)画出约束条件所表示的可行域

(3)在可行域内求目标函数的最优解 [编辑本段]线性规划的发展  法国数学家 j.- b.- j.

傅里叶和 c.瓦莱-普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意。

1939年苏联数学家л.в.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视。

1947年美国数学家g.b.丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法──单纯形法,为这门学科奠定了基础。

1947年美国数学家j.von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。

1951年美国经济学家t.c.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖。

50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。例如,1954年c.莱姆基提出对偶单纯形法,1954年s.

加斯和t.萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1956年a.塔克提出互补松弛定理,1960年g.

b.丹齐克和p.沃尔夫提出分解算法等。

线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究。由于数字电子计算机的发展,出现了许多线性规划软件,如mpsx,opheie,umpire等,可以很方便地求解几千个变量的线性规划问题。

1979年苏联数学家l. g. khachian提出解线性规划问题的椭球算法,并证明它是多项式时间算法。

1984年美国贝尔**实验室的印度数学家n.卡马卡提出解线性规划问题的新的多项式时间算法。用这种方法求解线性规划问题在变量个数为5000时只要单纯形法所用时间的1/50。

现已形成线性规划多项式算法理论。50年代后线性规划的应用范围不断扩大。 建立线性规划模型的方法 [编辑本段]线性规划的模型建立  从实际问题中建立数学模型一般有以下三个步骤;

1.根据影响所要达到目的的因素找到决策变量;

2.由决策变量和所在达到目的之间的函数关系确定目标函数;

3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。

所建立的数学模型具有以下特点:

1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般式非负的。

2、目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。

3、约束条件也是决策变量的线性函数。

当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。

例: 生产安排模型:某工厂要安排生产ⅰ、ⅱ两种产品,已知生产单位产品所需的设备台时及a、b两种原材料的消耗,如表所示,表中右边一列是每日设备能力及原材料**的限量,该工厂生产一单位产品ⅰ可获利2元,生产一单位产品ⅱ可获利3元,问应如何安排生产,使其获得最多?

解: 1、确定决策变量:设x1、x2为产品ⅰ、ⅱ的生产数量;

2、明确目标函数:获利最大,即求2x1+3x2最大值;

3、所满足的约束条件:

设备限制:x1+2x2≤8

原材料a限制:4x1≤16

原材料b限制:4x2≤12

基本要求:x1,x2≥0

用max代替最大值,s.t.(subject to 的简写)代替约束条件,则该模型可记为:

max z=2x1+3x2

s.t. x1+2x2≤8

4x1≤16

4x2≤12

x1,x2≥0 [编辑本段]线性规划的解法  求解线性规划问题的基本方法是单纯形法,现在已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用**法求解。

这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过**法求解可以理解线性规划的一些基本概念。

对于一般线性规划问题:

min z=cx

s.t.

ax =b

x>=0

其中a为一个m*n矩阵。

若a行满秩

则可以找到基矩阵b,并寻找初始基解。

用n表示对应于b的非基矩阵。则规划问题1可化为:

规划问题2:

min z=cb xb+**xn

s.t.

b xb+n xn = b (1)

xb >= 0, xn >= 0 (2)

(1)两边同乘于b-1,得

xb + b-1 n xn = b-1 b

同时,由上式得xb = b-1 b - b-1 n xn,也代入目标函数,问题可以继续化为:

规划问题3:

min z=cb b-1 b + ( ** - cb b-1 n ) xn

s.t.

xb+b-1n xn = b-1 b (1)

xb >= 0, xn >= 0 (2)

令n:=b-1n,b:= b-1 b,ζ= cb b-1b,σ= ** - cb b-1 n,则上述问题化为规划问题形式4:

min z= ζ + σ xn

s.t.

xb+ n xn = b (1)

xb >= 0, xn >= 0 (2)

在上述变换中,若能找到规划问题形式4,使得b>=0,称该形式为初始基解形式。

上述的变换相当于对整个扩展矩阵(包含c及a) 乘以增广矩阵 。所以重在选择b,从而找出对应的cb。

若存在初始基解

若σ>= 0

则z >=ζ。同时,令xn = 0,xb = b,这是一个可行解,且此时z=ζ,即达到最优值。所以,此时可以得到最优解。

若σ >= 0不成立

可以采用单纯形表变换。

σ中存在分量<0。这些负分量对应的决策变量编号中,最小的为j。n中与j对应的列向量为pj。

若pj <=0不成立

则pj至少存在一个分量ai,j为正。在规划问题4的约束条件(1)的两边乘以矩阵t。

t= 则变换后,决策变量xj成为基变量,替换掉原来的那个基变量。为使得t b >= 0,且t pj=ei(其中,ei表示第i个单位向量),需要:

l ai,j>0。

l βq+βi*(-aq,j/ai,j)>=0,其中q!=i。即βq>=βi/ ai,j * aq,j。

n 若aq,j<=0,上式一定成立。

n 若aq,j>0,则需要βq / aq,j >=βi/ ai,j。因此,要选择i使得βi/ ai,j最小。

如果这种方法确定了多个下标,选择下标最小的一个。

转换后得到规划问题4的形式,继续对σ进行判断。由于基解是有限个,因此,一定可以在有限步跳出该循环。

若对于每一个i,ai,j<=0

最优值无界。

若不能寻找到初始基解

无解。若a不是行满秩

化简直到a行满秩,转到若a行满秩。 [编辑本段]线性规划的应用  在企业的各项管理活动中,例如计划、生产、运输、技术等问题,线性规划是指从各种限制条件的组合中,选择出最为合理的计算方法,建立线性规划模型从而求得最佳结果

线性规划问题 解得概念

2楼:菥蓂颜

|≠设 系数矩阵a是m×n矩阵,秩为m,

b是a中m×m阶非奇异子矩阵(即|b|≠0),则称b是线性规划问题的一个基。

b 是由m个线性独立的列向量组成

ax=b中,ax=bxb+nxn=b

令 非基变量xn=0 得bxb=b

和特解xb =b-1b

结合xn=0

称为对应于b的基本解;

基本解个数=基的个数≤**m

基可行解 可行的基本解

xb≥0 xn=0

可行基:对应于基可行解的基

动态规划和随机规划是同一概念吗?

3楼:匿名用户

动态规划(dynamic programming)是运筹学的一个重要分支,它是解决多阶段决策问题的一种有效的数量化方法.动态规划是由美国学者贝尔曼(r.bellman)等人所创立的.

1951年贝尔曼首先提出了动态规划中解决多阶段决策问题的最优化原理,并给出了许多实际问题的解法.1957年贝尔曼发表了《动态规划》一书,标志着运筹学这一重要分支的诞生.

动态规划从创立到现在五十多年来,无论在工程技术,企业管理还是在工农业生产及军事等部门都有广泛的应用,并获得了显著的效果.在管理方面,动态规划可用于资源分配问题,最短路径问题,库存问题,背包问题,设备更新问题,最优控制问题等等.所以动态规划是现代管理学中进行科学决策不可缺少的工具.

动态规划的优点在于,它把一个多维决策问题转化为若干个一维最优化(optimization)问题,而对一维最优化问题一个一个地去解.这种方法是许多求极值方法所做不到的,它几乎优于所有现存的优化方法.除此之外,动态规划能求出全局极大或极小,这一点也优于其他优化方法.

需要指出的是,动态规划是求解最优化问题的一种方法,是解决问题的一种途径,而不是一种新的算法.在前面我们学习了用单纯形解线性规划问题,凡是具有线性规划问题那样统一的数学模型都可以用单纯形法去求解,而动态规划问题的求解却没有统一的方法(类似于单纯形法).因此在用动态规划求解最优化问题中,必须对具体问题具体分析,针对不同的问题,使用动态规划的最优化原理(optimization principle)和方法,建立起与其相应的数学模型,然后再用动态规划方法去求解.

根据动态规划这些特点,要求我们在学好动态规划的基本原理和方法的同时,还应具有丰富的想象力,只有这样才能建好模型求出问题的最优解.

可根据时间变量是离散的还是连续的,把动态规划问题的模型分为离散决策过程和连续决策过程,根据决策过程的演变是确定性的还是随机性的,动态规划问题的模型又可分为确定性的决策过程和随机性的决策过程,即离散确定性,离散随机性,连续确定性,连续随机性四种决策过程模型.我们主要研究离散确定性模型.

2.随机规划和模糊规划是处理随机和模糊优化问题的两大数学规划工具,称之为不确定规划。主要目的是为不确定环境中的优化理论奠定一个基础。

不确定规划理论由三大类组成:期望值模型,机 会约束规划和相关机会规划。

3.随机规划的概念比较少见

可以参考一下运筹学的分支

数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。

数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。

这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。

线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。

非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。

还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具。

排队论是运筹学的又一个分支,它有叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。

排队论最初是在二十世纪初由丹麦工程师艾尔郎关于**交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。

因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。

如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。

排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。

对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼。

最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。

近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求。

搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。

搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的。

运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面。

应该排队论和随机规划是比较接近的

具体的还希望你问一下专业的老师

希望对你有点帮助吧