金属的晶体结构,金属的晶体结构有哪几种主要类型

2020-11-22 22:20:47 字数 6035 阅读 4031

1楼:kyoya骸

根据原子在物质内部的排列方式,可将固态物质分为两大类:晶体,内部原子呈规则排列的物质。如固态金属;非晶体——内部原子无规则排列的物质。如松香、玻璃等。

金属的晶体结构:是指金属材料内部的原子的排列规律。它决定着材料的显微组织特性和材料的宏观性能。

金属键:金属原子间的结合键称为金属键。(带负电的自由电子与带正电的的金属正离子之间产生静电吸力,使金属原子结合在一起,这就是金属键结合的本质。

金属特性:良好的导电性和导热性;强度高;具有塑性;

有固定熔点;各向异性。

金属键模型图,如图所示:

一、晶体结构的基本知识:

(一)基本概念

1、晶胞:晶格中能够代表晶格特征的最小几何单元。

2、晶格参数:晶体学中用来描述晶胞大小与形状的几何参数。包括晶胞的三个棱边长度a、b、c和三个棱边夹角α、β、γ。

3、晶格常数:决定晶胞大小的三个棱长a、b、c。

(二)金属中常见的晶格

1、体心立方晶格:晶格参数 a=b=c;α=β=γ

=90°;立方体八个角上各有一个原子,体心处有一个原子。每个晶胞中原子数为2=1/8×8+1。

属于体心立方晶格的常用金属:α铬、钨、钼、钒、α铁、β钛、铌等。

结构图如图所示:

2、面心立方晶格:晶格参数:a=b=c;α=β=γ=90°;晶胞的八个角上各有一个原子,立方体六个面的面心各有一个原子。每个晶胞中原子数为4=1/8×8+1/2×6

属于面心立方晶格的常用金属:γ铁、铝、铜、镍等。结构图如图所示:

3、密排六方晶格:晶格参数:a=b≠c;α=β=90°、γ=120°;每个晶胞中原子数为:6=1/6×12+1/2×2+3。

属于密排六方晶格的常用金属:镁、锌、铍、α钛、镉等。结构图如图所示:

(三)晶格的致密度

致密度=原子所占的总体积÷晶胞的体积

体心立方晶格的致密度=0.68,计算公式为:

面心立方晶格的致密度=0.74

密排六方晶格的致密度=0.74

(四)晶面指数与晶向指数

晶面:晶体中由物质质点所组成的平面。

晶向:由物质质点所决定的直线。

每一组平行的晶面和晶向都可用一组数字来标定其位向。这组数字分别称为晶面指数和晶向指数。

晶面指数的确定:晶面与三个坐标轴截距的倒数取最小整数,用圆括号表示。如(111)、(112)。

晶向指数的确定:通过坐标原点直线上某一点的坐标,用方括号表示。

晶面族与晶向族

晶面族:晶面指数中各个数字相同但是符号不同或排列顺序不同的所有晶面。这些晶面上的原子排列规律相同,具有相同的原子密度和性质。

如=(110)+(101)+(011)+(101)+(110)+(011)

晶向族:原子排列密度完全相同的晶向。如<111>=[111]+[111]+[111]+[111]

(五)晶体的各向异性

在晶体中,由于各个晶面和晶向上原子排列密度不同,使原子间的相互作用力也不相同。因此在同一单晶体内不同晶面和晶向上的性能也是不同的。这种现象称为晶体的各向异性。

晶体分单晶体和多晶体

单晶体:晶体内各处晶格位向一致的晶体。

多晶体:晶体内晶格位向不相同的晶体。

实际金属是多晶体

二、纯金属的实际晶体结构

(一)晶粒与亚晶粒

晶粒——金属晶体中,晶格位向基本一致,并有边界与邻区分开的区域。

晶界——晶粒之间原子排列不规则的区域。

实际金属晶粒大小除取决于金属种类外,主要取决于结晶条件和热处理工艺。

亚晶粒——晶粒内部晶格位向差小于2°、3°的更小的晶块。

亚晶界——亚晶粒间的过渡区。

(二)晶体中的晶体缺陷

晶体缺陷:是指晶体中原子排列不规则的区域。

根据晶体缺陷的几何特点和对原子排列不规则性的影响范围可分为三大类:

1、点缺陷;

2、线缺陷;

3、面缺陷。

1)点缺陷

以一个点为中心,在它周围造成原子排列不规则,产生晶格畸变和内应力的缺陷。点缺陷类型主要有三种:

(1)间隙原子

(2)晶格空位

(3)置换原子

在晶格的结点处出现原子直径不同的异类原子的晶体缺陷。置换原子示意图,如图所示:

☆间隙原子:在晶格的间隙处出现多余原子的晶体缺陷。

☆晶格空位:在晶格的结点处出现缺少原子的晶体缺陷。如图所示:

2)线缺陷

主要是指各种形式的位错。

位错:是指晶体中某一列或若干列原子发

生了有规律的错排现象。位错密度:单位体积内位错线的长度,(cm-2),如图所示:

3)面缺陷

主要是指晶界和亚晶界。它是由于受到其两侧的不同晶格位向的晶粒或亚晶粒的影响而使原子呈不规则排列。

如图所示:

一、基本概念

合金系:是指具有相同组元,而成分比例不同的一系列合金。如各种碳素钢。

相:是指在合金中,凡是化学成分相同、晶体结构相同并有界面与其它部分分隔开来的一个均匀区域。在一个相中可以有多个晶粒,但是一个晶粒中只能是同一个相。

合金中有两类基本的相结构,固溶体和金属化合物。

显微组织:是指在显微镜下看到的相和晶粒的形态、大小和分布。它可以看作是由各个相组成的。

合金的显微组织可以看作是由各个相所组成的,这些相称为合金组织的相组成物;也可以看作是基本组织所组成的,这些基本组织称为合金组织的组织组成物。合金的力学性能不仅取决于它的化学成分,更取决于它的显微组织。

二、合金的相结构

合金的晶体结构:是指合金中各个相的晶体结构,简称相结构。

合金的相结构通常分为两大类:

(一)固溶体;

(二)金属化合物。

(一)固溶体

固溶体:合金结晶成固态时,溶质原子分布在溶剂晶格中形成的一种与溶剂有相同晶格的相。

固溶体与溶剂具有相同晶体结构。

固溶体的类型:1、间隙固溶体 ;2、置换固溶体。

1、间隙固溶体

间隙固溶体: 溶质原子分布于溶剂的晶格间隙中所形成的固溶体。都是有限固溶体,也是无序固溶体。如图所示:

2、置换固溶体

置换固溶体:溶质原子代替溶剂原子占据着溶剂晶格结点位置而形成的固溶体。置换固溶体可以是有限固溶体也可以是无限固溶体。

如图所示:

有限固溶体:固溶体的溶解度是有限的。

无限固溶体:固溶体的溶解度是无限的。(组成固溶体的两种元素随比例不同可以互为溶质或溶剂。)

形成无限固溶体的必要条件:是溶剂与溶质的晶体结构相同。

无序固溶体:溶质原子的分布是无序的。

有序固溶体:溶质原子的分布是有序的。

固溶体的有序化:无序固溶体向有序固溶体的转变过程。 硬度和脆性增加,塑性下降。

3、影响溶解度的主要因素

溶解度:溶质在固溶体中的极限浓度称为溶质在固溶体中的溶解度。

影响溶解度的主要因素:

1)温度

2)原子直径因素

3)晶体结构因素

4、固溶体的性能

固溶强化:溶入溶质元素形成固溶体而使金属的强度、硬度升高的现象。固溶强化是金属材料的一种重要的强化途径。

固溶体的性能:一般来说,固溶体是一个硬度不高、塑性较好的一个相。

(二)金属化合物(中间相)

在合金中,当溶质含量超过固溶体的溶解度时,除了形成固溶体外,还将出现新相。

这个新相可能是一种新的固溶体,也可能是一种化合物。如:fe3c、fes。

金属化合物:具有金属性质的化合物。(其晶体结构不同于任一组元)

(1)金属化合物的性能

金属化合物性能:一般都具有复杂的晶格结构,熔点高,硬而脆。

金属化合物若以细小的粒状均匀分布在固溶体相的基体上会使合金的强度、硬度进一步提高,这种现象称为第二相弥散强化。

在合金中,金属化合物的多少、形态、大小、分布等对合金的性能有不同的影响。

(2)金属化合物的种类

1、正常价化合物:这类化合物符合正常的原子价规律,成分固定并有严格分子式的金属化合物。

2、电子化合物:这类化合物不遵守原子价规律而服从电子浓度规律。其晶体结构主要取决于电子浓度。

3、间隙化合物:间隙化合物一般是由原子半径较大的过渡族金属元素和原子半径较小的非金属元素组成的化合物。(非金属元素有规则的嵌入金属元素晶格的间隙中)

a)当非金属原子直径与金属原子直径比值小于0.59时,形成简单晶格的间隙化合物,称间隙相.

b)当非金属原子直径与金属原子直径比值大于0.59时,则不能产生间隙相,而形成复杂结构的间隙化合物.

间隙相、复杂结构的间隙化合物、间隙固溶体的区别:

1、晶体结构:间隙固溶体的晶体结构与溶剂相同;而间隙相和复杂结构的间隙化合物的晶体结构不同于任一组元,间隙相具有简单的晶体结构。

2、性能:间隙固溶体硬度低、塑性好,通常作为基体使用;间隙相和复杂结构的间隙化合物都具有高熔点、高硬度。(尤其是间隙相)通常作为弥散强化相。

金属的晶体结构有哪几种主要类型

2楼:诺言随锋

金属晶体最常见的有四种

立方最密堆积ccp(立方面心堆积) a1 (如金, 铜, 铝)六方最密堆积hcp a3 (如mg, zn)立方体心堆积 bcp a2钠

金刚石型堆积 a4

它们各自的特点如下:

立方最密堆积ccp堆积系数74.05% 具有超强的延展性六方最密堆积(hcp, a3), 晶胞为六方简单(hp) 堆积系数74.05%

立方体心堆积(bcp,a2) 晶胞为体心立方(ci) 堆积系数68.02%

金刚石型堆积 a4 晶胞为面心立方(cf) 堆积系数34.01% 通常为共价型晶体(原子晶体)

3楼:

金属晶体最常见的有四种

立方最密堆积ccp(立方面心堆积) a1 (abcabc)六方最密堆积hcp a3 (abab)

立方体心堆积 bcp a2

金刚石型堆积 a4

4楼:匿名用户

常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;

α-fe、cr、v属于体心立方晶格;

γ-fe 、al、cu、ni、pb属于面心立方晶格;

mg、zn属于密排六方晶格;

金属的晶体结构是怎样的?

5楼:广西师范大学出版社

在金属世界里,每一种金属都有自己的“脾性”。有的金属容易变形,既可碾成片,也可拉成丝,像金、银、铜、锡、铝;有的金属相当硬,不容易变形,如铬、钨、钒、钽等。金属的“脾性”同它本身的晶体结构有着密切关系。

让我们用火柴盒里放弹子糖的方式,来说明金属的晶体结构。找一个火柴盒,取出火柴,放一层弹子糖。在放第

二、第三、第四……各个层次的弹子糖时,可以有不同的堆放形式。我们把第一层叫做a层,第二层叫做b层。如果第三层弹子糖直接放在第一层弹子糖的上方,这是另一个a层;第四层弹了糖直接放在b层的弹子糖上方,这又是个b层。

这样可以组成一种abab……晶体结构。换一种推放法:开始a层和b层与以前一样,只是第三层作为c层弹子糖不放在a层上方,第四层才在a层上方,第五层是b层,第六层是c层,这样就制成了一种abcabcab……晶体结构。

从这两种晶体结构模型可发现,只要一点点推力,上层弹子糖就容易滑下。具有这种晶体结构的金属,容易改变形状。

如果我们在第一层的上方,笔直地推放第二层弹子糖,这样取出上下左右四颗弹子糖,构成的是立方形,四颗弹子糖中间差不多还可以放一颗弹子糖,这样堆砌起来的晶体结构,就成了硬性金属的结构模型。如果把两种不同的金属,混合起来变成“合金”,会比其中任何一种金属更硬。像我们日常使用的硬币,就是铝镁合金。

有些螺丝或者齿轮的牙齿,比原来的钢材要硬朗,而且耐磨,这是因为在使用以前,已经把它放在含氮的气体中,进行热处理,叫做渗氮。也就是在铁晶体的空隙里,固定了一个氮原子,每一层都一样。经过这样的排列,螺丝和齿轮牙的表面就很坚硬了,并且可以防止剧烈的腐蚀。

除了金属以外,有一些化合物,如食盐、石膏、碳酸氢钠、氢氧化钾、硬脂酸钠等成千上万种物质,都有一定的结构。氯化钠的晶体结构模型,我们可以用两种不同颜色的弹子糖,在火柴盒里排列成一个方阵。将红、白两种弹子糖交替排列,像一块国际象棋板。

第二层弹子糖的颜色与第一层的“错位”,红色的放在白色的上面,第三层再交错放,就制成了一种氯化钠的模拟晶体结构。红色弹子糖代表钠离子,带正电荷,白色的弹子糖代表氯离子,带负电荷。

MgCl2是什么晶体结构,mgcl2的晶体结构图

1楼 掷载刚易 化学品名称 氯化镁 1 mgcl2 化学品描述 英文名称为magnesiumchloride。 化学式mgcl2,是由74 54 的氯和25 48 的镁组成的,相对分子质量95 21。呈无色六角晶体。密度2 316 2 33克 厘米3。熔点714 。 沸点1412 。通常含有六个分子...