分式方程练习题,分式方程练习题20道

2020-11-19 12:09:06 字数 8976 阅读 8244

1楼:小猪

^题设是这样吧~ 因为你的式子实在是复杂了点 你就仔细看看括号啦 应该括号没有括错的

(4 x^3 + 10 x^2 + 16 x + 1)/(2 x^2 + 5 x + 7) = (6 x^3 + 10 x^2 +5 x - 1)/(3 x^2 + 5 x + 1)

=>((4 x^3 + 10 x^2 + 16 x + 1)*(3 x^2 + 5 x + 1)-(2 x^2 + 5 x + 7)*(6 x^3 + 10 x^2 + 5 x - 1))/((2 x^2 + 5 x + 7)*(3 x^2 + 5 x + 1))=0

=>((1 + 21 x + 93 x^2 + 102 x^3 + 50 x^4 + 12 x^5)-(-7 + 30 x + 93 x^2 + 102 x^3 + 50 x^4 + 12 x^5))/((2 x^2 + 5 x + 7)*(3 x^2 + 5 x + 1))=0

=>(8 - 9 x)/((2 x^2 + 5 x + 7)*(3 x^2 + 5 x + 1))=0

因为 分母不能为0 所以 要原式等于0

只能是 8 - 9 x =0 =>

x=8/9

100道八年级解分式方程练习题(带答案) 5

2楼:匿名用户

一、复习

例 解方程:

(1)2x+xx+3=1; (2)15x=2×15 x+12;

(3)2(1x+1x+3)+x-2x+3=1.

解 (1)方程两边都乘以x(3+3),去分母,得

2(x+3)+x2=x2+3x,即2x-3x=-6

所以 x=6.

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.

(2)方程两边都乘以x(x+12),约去分母,得

15(x+12)=30x.

解这个整式方程,得

x=12.

检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根.

(3)整理,得

2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

即 2x+xx+3=1.

方程两边都乘以x(x+3),去分母,得

2(x+3)+x2=x(x+3),

即 2x+6+x2=x2+3x,

亦即 2x-3x=-6.

解这个整式方程,得 x=6.

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.

二、新课

例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?

请同学根据题意,找出题目中的等量关系.

答:骑车行进路程=队伍行进路程=15(千米);

骑车的速度=步行速度的2倍;

骑车所用的时间=步行的时间-0.5小时.

请同学依据上述等量关系列出方程.

答案:方法1 设这名学生骑车追上队伍需x小时,依题意列方程为

15x=2×15 x+12.

方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为

15x-15 2x=12.

解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程.

方程两边都乘以2x,去分母,得

30-15=x,

所以 x=15.

检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意.

所以骑车追上队伍所用的时间为15千米 30千米/时=12小时.

答:骑车追上队伍所用的时间为30分钟.

指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间.

如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按

速度找等量关系列方程,所列出的方程都是分式方程.

例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?

分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是

s=mt,或t=**,或m=st.

请同学根据题中的等量关系列出方程.

答案:方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3.依题意,列方程为

2(1x+1x3)+x2-xx+3=1.

指出:工作效率的意义是单位时间完成的工作量.

方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程

2x+xx+3=1.

方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程

1-2x=2x+3+x-2x+3.

用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了.重点是找等量关系列方程.

三、课堂练习

1.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.

2.a,b两地相距135千米,有大,小两辆汽车从a地开往b地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.

答案:1.甲每小时加工15个零件,乙每小时加工20个零件.

2.大,小汽车的速度分别为18千米/时和45千米/时.

四、小结

1.列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.

原方程的增根和不符合题意的根都应舍去.

2.列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数.但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数.

在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从a地到达b地各用的时间,如果设直接未知数,即设,小汽车从a地到b地需用时间为x小时,则大汽车从a地到b地需(x+5-12)小时,依题意,列方程

135 x+5-12:135x=2:5.

解这个分式方程,运算较繁琐.如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从a地到b地的时间,运算就简便多了.

五、作业

1.填空:

(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;

(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;

(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.

2.列方程解应用题.

(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?

(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?

(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

(4)a,b两地相距135千米,两辆汽车从a地开往b地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知两车的速度之比是5:2,求两辆汽车各自的速度.

答案:1.(1)mn m+n; (2)m a-b-ma; (3)ma a+b.

2.(1)第二次加工时,每小时加工125个零件.

(2)步行40千米所用的时间为40 4=10(时).答步行40千米用了10小时.

(3)江水的流速为4千米/时.

课堂教学设计说明

1.教学设计中,对于例1,引导学生依据题意,找到三个等量关系,并用两种不同的方法列出方程;对于例2,引导学生依据题意,用三种不同的方法列出方程.这种安排,意在启发学生能善于从不同的角度、不同的方向思考问题,激励学生在解决问题中养成灵活的思维习惯.

这就为在列分式方程解应用题教学中培养学生的发散思维提供了广阔的空间.

2.教学设计中体现了充分发挥例题的模式作用.例1是行程问题,其中距离是已知量,求速度(或时间);例2是工程问题,其中工作总量为已知量,求完成工作量的时间(或工作效率).

这些都是运用列分式方程求解的典型问题.教学中引导学生深入分析已知量与未知量和题目中的等量关系,以及列方程求解的思路,以促使学生加深对模式的主要特征的理解和识另

分式方程练习题20道

3楼:凤儿云飞

甲、乙、

丙三个数字一次大1,若丙数的倒数的两倍与乙数的倒数之和与甲数的倒数的三倍相等,求甲、乙、丙

第一道:设甲=x,乙=(x+1),丙=(x+2)

2/(x+2)+1/(x+1)=3/x

2x+x+x+2x=x+3x+2

x=1

x=1或-1

∵乙的倒数=1/(x+1)

∴x≠-1

∴x=1

一个两位数的个位上的数为7,若把个位数字与十位数字对调,那么所得的两位数与原两位数的比值为8:3,求原两位数

第二道设原两位数十位上数字为x

(10x+7)/(70+x)=3/8

3(70+x)=8(10x+7)

210+3x=80x+56

77x=154

x=2所以原两位数为27

一艘轮船从a港口向b港口行驶,以在本航线航行时的常规速度走完全程的5分之3,此后航速减小了10海里每小时,并以此速度一直行驶到b港口。这样,本次航行减速后行驶所用的时间和未减速时行驶所用的时间相同。这艘轮船在本航线的常规速度是多少?

第三道艘轮船在本航线的常规速度是x

3/5÷x=(1-3/5)÷(x-10)

3(x-10)=2x

x=30

这艘轮船在本航线的常规速度是30海里每小时

甲乙两地相距125千米,从甲地到乙地,有人乘车,有人骑自行车,自行车比汽车早出发4小时,晚到1/2小时,已知骑车的速度与乘车的速度之比为2:5,求自行车与汽车的速度各式多少?

设自行才的速度为x千米/小时,则乘车速度为5x/2千米/小时

则乘车所所花时间为:125÷5x/2=50/x

则有方程:125/x-50/x=4.5(根据骑车和乘车的时间差)

解得x=50/3千米/小时

则汽车速度为:5/2*50/3=125/3千米/小时

某车队计划t天运送m吨货物,如果已经运送了其中的n吨,(n小于m)则运完剩下货物需要的天数t1=__,平均每天运出货物的吨数a=____

每天运货物量为:m/t

则运完剩下的货物需要天数为:(m-n)÷m/t=(m-n)*t/m

a=m/t

轮船顺水航行80km所需时间和逆水航行60km所需时间相同,已知水流的速度是3km/h,求轮船在静水中的速度

设轮船在静水中速度为x,

则顺水速度为:x+3

逆水速度为:x-3

则有:80/(x+3)=60/(x-3)

解方程得:x=21km/h

某点3月份购进一批t恤衫,进价合计是12万元。因畅销,商店又于4月份购进一批相同的t恤衫,进价合计是18.75万元,数量是3月份的1.

5倍,但买件进价涨了5元,这两批t恤衫开始都以180元**,到5月初,商店把剩下的100件打8折**,很快售完,问商店供获毛利润(销售收入减去进价总计)多少元??

设3月份每件进价为x元,则4月份每件进价为x+5元

所以(12*10000/x)*(3/2)*(x+5)=18.75*10000

得x=120元

且总进衣服 (12*10000/x)*5/2=2500件

总收入=2400*180+100*180*80%=446400元

所以毛利润=446400-120000-187500=138900元

/2x=2/x+3

x/x+1=2x/3x+3 +1

2/x-1=4/x^2-1

5/x^2+x - 1/x^-x=0

1/2x=2/x+3

对角相乘

4x=x+3

3x=3

x=1分式方程要检验

经检验,x=1是方程的解

x/(x+1)=2x/(3x+3)+1

两边乘3(x+1)

3x=2x+(3x+3)

3x=5x+3

2x=-3

x=-3/2

分式方程要检验

经检验,x=-3/2是方程的解

2/x-1=4/x^2-1

两边乘(x+1)(x-1)

2(x+1)=4

2x+2=4

2x=2

x=1分式方程要检验

经检验,x=1使分母为0,是增根,舍去

所以原方程无解

5/x^2+x - 1/x^2-x=0

两边乘x(x+1)(x-1)

5(x-1)-(x+1)=0

5x-5-x-1=0

4x=6

x=3/2

分式方程要检验

经检验,x=3/2是方程的解

1/2x=2/x+3

对角相乘

4x=x+3

3x=3

x=1分式方程要检验

经检验,x=1是方程的解

x/(x+1)=2x/(3x+3)+1

两边乘3(x+1)

3x=2x+(3x+3)

3x=5x+3

2x=-3

x=-3/2

分式方程要检验

经检验,x=-3/2是方程的解

2/x-1=4/x^2-1

两边乘(x+1)(x-1)

2(x+1)=4

2x+2=4

2x=2

x=1分式方程要检验

经检验,x=1使分母为0,是增根,舍去

所以原方程无解

5/x^2+x - 1/x^2-x=0

两边乘x(x+1)(x-1)

5(x-1)-(x+1)=0

5x-5-x-1=0

4x=6

x=3/2

分式方程要检验

经检验,x=3/2是方程的解

5x/(3x-4)=1/(4-3x)-2

乘3x-4

5x=-1-2(3x-4)=-1-6x+8

11x=7

x=7/11

分式方程要检验

经检验x=7/11是方程的解

1/(x+2) + 1/(x+7) = 1/(x+3) + 1/(x+6)

通分 (x+7+x+2)/(x+2)(x+7)=(x+6+x+3)/(x+3)(x+6)

(2x+9)/(x^2-9x+14)-(2x+9)/(x^2+9x+18)=0

(2x+9)[1/(x^2-9x+14)-1/(x^2+9x+18)]=0

因为x^2-9x+14不等于x^2+9x+18

所以1/(x^2-9x+14)-1/(x^2+9x+18)不等于0

所以2x+9=0

x=-9/2

分式方程要检验

经检验x=-9/2是方程的解

7/(x^2+x)+1/(x^2-x)=6/(x^2-1)

两边同乘x(x+1)(x-1)

7(x-1)+(x+1)=6x

8x-6=6x

2x=6

x=3分式方程要检验

经检验,x=3是方程的解

化简求值。[x-1-(8/x+1)]/[x+3/x+1] 其中x=3-根号2

[x-1-(8/x+1)]/[(x+3)/(x+1)]

=/[(x+3)/(x+1)]

=(x^2-9)/(x+3)

=(x+3)(x-3)/(x+3)

=x-3

=-根号2

8/(4x^2-1)+(2x+3)/(1-2x)=1

8/(4x^2-1)-(2x+3)/(2x-1)=1

8/(4x^2-1)-(2x+3)(2x+1)/(2x-1)(2x+1)=1

[8-(2x+3)(2x+1)]/(4x^2-1)=1

8-(4x^2+8x+3)=(4x^2-1)

8x^2+8x-6=0

4x^2+4x-3=0

(2x+3)(2x-1)=0

x1=-3/2

x2=1/2

代入检验,x=1/2使得分母1-2x和4x^2-1=0。舍去

所以原方程解:x=-3/2

(x+1)/(x+2)+(x+6)/(x+7)=(x+2)/(x+3)+(x+5)/(x+6)

1-1/(x+2)+1-1/(x+7)=1-1/(x+3)+1-1/(x+6)

-1/(x+2)-1/(x+7)=-1/(x+3)-1/(x+6)

1/(x+2)+1/(x+7)=1/(x+3)+1/(x+6)

1/(x+2)-1/(x+3)=1/(x+6)-1/(x+7)

(x+3-(x+2))/(x+2)(x+3)=(x+7-(x+6))/(x+6)(x+7)

1/(x+2)(x+3)=1/(x+6)(x+7)

(x+2)(x+3)=(x+6)(x+7)

x^2+5x+6=x^2+13x+42

8x=-36

x=-9/2

经检验,x=-9/2是方程的根。

(2-x)/(x-3)+1/(3-x)=1

(2-x)/(x-3)-1/(x-3)=1

(2-x-1)/(x-3)=1

1-x=x-3

x=2分式方程要检验

经检验,x=2是方程的根